题目内容

【题目】如图所示的几何体是由棱台ABC﹣A1B1C1和棱锥D﹣AA1C1C拼接而成的组合体,其底面四边形ABCD是边长为2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.
(Ⅰ)求证:平面AB1C⊥平面BB1D;
(Ⅱ)求二面角A1﹣BD﹣C1的余弦值.

【答案】(Ⅰ)证明:∵BB1⊥平面ABCD,∴BB1⊥AC, ∵ABCD是菱形,∴BD⊥AC,
又BD∩BB1=B,∴AC⊥平面BB1D,
∵AC平面AB1C,∴平面AB1C⊥平面BB1D;
(Ⅱ)设BD、AC交于点O,以O为坐标原点,以OA为x轴,以OD为y轴,建立如图所示空间直角坐标系.


设平面A1BD的法向量
,取z= ,得
设平面DCF的法向量
,取z= ,得
设二面角A1﹣BD﹣C1为θ,


【解析】(Ⅰ)由BB1⊥平面ABCD,得BB1⊥AC,再由ABCD是菱形,得BD⊥AC,由线面垂直的判定可得AC⊥平面BB1D,进一步得到平面AB1C⊥平面BB1D;(Ⅱ)设BD、AC交于点O,以O为坐标原点,以OA为x轴,以OD为y轴,建立如图所示空间直角坐标系.求出所用点的坐标,得到平面A1BD与平面DCF的法向量,由两法向量所成角的余弦值可得二面角A1﹣BD﹣C1的余弦值.
【考点精析】根据题目的已知条件,利用平面与平面垂直的判定的相关知识可以得到问题的答案,需要掌握一个平面过另一个平面的垂线,则这两个平面垂直.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网