题目内容
(1)等差;(2)
解析在三角形ABC中由余弦定理得:展开化简得:考点:本题主要考查三角函数的化简、求值,解三角形,考查推理论证能力、计算能力等.
已知α,β都是锐角,,, .
已知,,求
在△ABC中,角A,B,C所对的边分别为a,b,c,且+1=.(1)求B;(2)若cos(C+)=,求sinA的值.
已知向量,设函数.(1).求函数f(x)的最小正周期;(2).已知a,b,c分别为三角形ABC的内角对应的三边长,A为锐角,a=1,,且恰是函数f(x)在上的最大值,求A,b和三角形ABC的面积.
如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.(1)若C是半径OA的中点,求线段PC的长;(2)设,求面积的最大值及此时的值.
已知:,则
已知α,β∈(0,π),且tan(α-β)=,tanβ=-,求2α-β的值.
已知△ABC的内角A、B、C的对边分别为a、b、c,sin Ccos C-cos2C=,且c=3.(1)求角C;(2)若向量m=(1,sin A)与n=(2,sin B)共线,求a、b的值.