题目内容
设a∈R,f(x)=cosx(asinx-cosx)+sin2x的定义域是![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_ST/0.png)
①f(x)在
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_ST/1.png)
②
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_ST/2.png)
③f(x)的最大值为2;
④使得f(x)取得最大值的点仅有一个
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_ST/3.png)
其中正确命题的序号是 .(将你认为正确命题的序号都填上)
【答案】分析:利用二倍角公式化简函数f(x),然后由f(
)=
,求出a的值,进一步化简为f(x)=2sin(2x-
),然后根据x的范围求出2x-
的范围,利用单调性求出函数的最大值和最小值.根据函数单调性及最值即可选出答案.
解答:解:f(x)=cosx(asinx-cosx)+sin2x=asinxcosx-cos2x+sin2x=
sin2x-cos2x,
由f(
)=
,得
=
,解得a=2
.
所以f(x)=2sin(2x-
),
当x∈[
,
]时,2x-
∈[
,
],f(x)是增函数,
当x∈[
,
]时,2x-
∈[
,
],f(x)是减函数,
所以函数f(x)在[
,
]上的最大值是:f(
)=2,
故③正确;
且当f(x)取得最大值的点仅有一个
.
故④正确;
由上述单调性知:
是f(x)的一个单调递减区间,
故②正确;
又f(
)=
,f(
)=
,
所以函数f(x)在[
,
]上的最小值为:f(
)=
;
故①错误.
故答案为:②③④.
点评:本题是中档题,考查三角函数的化简,二倍角公式的应用,三角函数的求值,函数的单调性、最值,考查计算能力,常考题型.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/3.png)
解答:解:f(x)=cosx(asinx-cosx)+sin2x=asinxcosx-cos2x+sin2x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/4.png)
由f(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/9.png)
所以f(x)=2sin(2x-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/10.png)
当x∈[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/15.png)
当x∈[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/20.png)
所以函数f(x)在[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/23.png)
故③正确;
且当f(x)取得最大值的点仅有一个
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/24.png)
故④正确;
由上述单调性知:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/25.png)
故②正确;
又f(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/29.png)
所以函数f(x)在[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/32.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123523036075244/SYS201310251235230360752014_DA/33.png)
故①错误.
故答案为:②③④.
点评:本题是中档题,考查三角函数的化简,二倍角公式的应用,三角函数的求值,函数的单调性、最值,考查计算能力,常考题型.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目