题目内容
如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1存在点D,使得AD⊥A1B,并求的值.
(Ⅰ)见解析(Ⅱ)(Ⅲ)
把平面与平面垂直转化为直线和平面垂直.要证直线和平面垂直,依据相关判定定理转化为证明直线和直线垂直.求二面角,往往利用“作——证——求”的思路完成,作二面角是常常利用直线和平面垂直.第(Ⅲ)题,求解有难度,可以空间向量完成.
(Ⅰ)因为为正方形,所以.
因为平面ABC⊥平面AA1C1C,,且平面ABC平面AA1C1C,
所以⊥平面ABC.
(Ⅱ)由(Ⅰ)知,⊥AC, ⊥AB.
由题意知,所以.
如图,以A为原点建立空间直角坐标系,则.
设平面的法向量为,则即
令,则,所以.
同理可得,平面的法向量为.
所以.
由题知二面角A1-BC1-B1为锐角,所以二面角A1-BC1-B1的余弦值为.
(Ⅲ)设是直线上的一点,且.
所以,解得,所以.
由,即,解得.
因为,所以在线段上存在点D,使得,此时.
【考点定位】本题考查了平面与平面垂直的性质定理,直线和平面垂直的判定定理,考查了法向量、空间向量在立体几何中的应用和二面角的求法,考查了空间想象能力和推理论证能力.
(Ⅰ)因为为正方形,所以.
因为平面ABC⊥平面AA1C1C,,且平面ABC平面AA1C1C,
所以⊥平面ABC.
(Ⅱ)由(Ⅰ)知,⊥AC, ⊥AB.
由题意知,所以.
如图,以A为原点建立空间直角坐标系,则.
设平面的法向量为,则即
令,则,所以.
同理可得,平面的法向量为.
所以.
由题知二面角A1-BC1-B1为锐角,所以二面角A1-BC1-B1的余弦值为.
(Ⅲ)设是直线上的一点,且.
所以,解得,所以.
由,即,解得.
因为,所以在线段上存在点D,使得,此时.
【考点定位】本题考查了平面与平面垂直的性质定理,直线和平面垂直的判定定理,考查了法向量、空间向量在立体几何中的应用和二面角的求法,考查了空间想象能力和推理论证能力.
练习册系列答案
相关题目