题目内容
【题目】已知函数
(1)若,求函数的单调区间;
(2)若关于的不等式在上恒成立,求实数的取值范围.
【答案】(1)函数的单调递增区间为,单调减区间为(2)
【解析】
(1)将代入函数的解析式,求出该函数的定义域和导数,然后分别解不等式和,即可得出该函数的减区间和增区间;
(2)由题意得出不等式对任意的恒成立,构造函数,利用导数分析出函数在区间上的单调性,得出该函数的最大值,结合,可求出实数的取值范围.
(1)当时,,其定义域为,
则,当时,当时,
故函数的单调递增区间为,单调减区间为;
(2)不等式,即,即,
由题可知在上恒成立,
令,则,
令,则,
①若,则,函数在上单调递增,
所以,则,不符合题意;
②若,则当时,函数在上单调递增,
所以当时,,则,不符合题意;
③若,则在上恒成立,函数在上单调递减,
所以,所以,符合题意.
综上,,故实数的取值范围为.
练习册系列答案
相关题目