题目内容

11.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为$\frac{1}{2}$,且各次击鼓出现音乐相互独立.
(Ⅰ)设每盘游戏获得的分数为X,求X的分布列;
(Ⅱ)玩三盘游戏,至少有一盘出现音乐的概率是多少?

分析 (Ⅰ)X可能的取值为10,20,100,-200.运用几何概率公式得出求解相应的概率,得出分布列.
(Ⅱ)利用对立事件求解得出P(A1)=P(A2)=P(A3)=P(X=-200)=$\frac{1}{8}$,求解P(A1A2A3)即可得出1-P(A1A2A3).

解答 解:(1)X可能的取值为10,20,100,-200.根据题意,有
P(X=10)=${C}_{3}^{1}$×($\frac{1}{2}$)1×(1-$\frac{1}{2}$)2=$\frac{3}{8}$,
P(X=20)=${C}_{3}^{2}$×($\frac{1}{2}$)2×(1-$\frac{1}{2}$)1=$\frac{3}{8}$,
P(X=100)=${C}_{3}^{3}$×($\frac{1}{2}$)3×(1-$\frac{1}{2}$)0=$\frac{1}{8}$,
P(X=-200)=${C}_{3}^{0}$×($\frac{1}{2}$)0×(1-$\frac{1}{2}$)3=$\frac{1}{8}$.
以X的分布列为:

X1020100-200
P$\frac{3}{8}$$\frac{3}{8}$$\frac{1}{8}$$\frac{1}{8}$
(Ⅱ)解:设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则
P(A1)=P(A2)=P(A3)=P(X=-200)=$\frac{1}{8}$,
所以“三盘游戏中至少有一盘出现音乐”的概率为1-P(A1A2A3)=1-($\frac{1}{8}$)3=$\frac{511}{512}$.
因此,玩三盘游戏至少有一盘出现音乐的概率是$\frac{511}{512}$.

点评 本题考查了离散型的概率分布问题,几何互斥事件,对立事件概率求解即可,属于中档题,准确计算,思路清晰.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网