题目内容

【题目】如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1 , 且AA1=AB=2.

(1)求证:AB⊥BC;
(2)若直线AC与平面A1BC所成的角为 ,求锐二面角A﹣A1C﹣B的大小.

【答案】
(1)证明:如下图,

取A1B的中点D,连接AD,

因AA1=AB,则AD⊥A1B

由平面A1BC⊥侧面A1ABB1

且平面A1BC∩侧面A1ABB1=A1B,

得AD⊥平面A1BC,又BC平面A1BC,

所以AD⊥BC

因为三棱柱ABC﹣﹣﹣A1B1C1是直三棱柱,

则AA1⊥底面ABC,

所以AA1⊥BC.

又AA1∩AD=A,从而BC⊥侧面A1ABB1

又AB侧面A1ABB1,故AB⊥BC


(2)解:连接CD,由(1)可知AD⊥平面A1BC,

则CD是AC在平面A1BC内的射影

∴∠ACD即为直线AC与平面A1BC所成的角,则

在等腰直角△A1AB中,AA1=AB=2,且点D是A1B中点

,且

过点A作AE⊥A1C于点E,连DE

由(1)知AD⊥平面A1BC,则AD⊥A1C,且AE∩AD=A

∴∠AED即为二面角A﹣A1C﹣B的一个平面角,

且直角△A1AC中:

且二面角A﹣A1C﹣B为锐二面角

,即二面角A﹣A1C﹣B的大小为


【解析】(1)取A1B的中点D,连接AD,由已知条件推导出AD⊥平面A1BC,从而AD⊥BC,由线面垂直得AA1⊥BC.由此能证明AB⊥BC.(2)连接CD,由已知条件得∠ACD即为直线AC与平面A1BC所成的角,∠AED即为二面角A﹣A1C﹣B的一个平面角,由此能求出二面角A﹣A1C﹣B的大小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网