题目内容
已知,则__________.
我国古代数学家刘徽是公元三世纪世界上最杰出的数学家,他在《九章算术圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法.所谓“割圆术”,即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率(圆周率指圆周长与该圆直径的比率).刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径
,此时圆内接正六边形的周长为
,此时若将圆内接正六边形的周长等同于圆的周长,可得圆周率为3,当用正二十四边形内接于圆时,按照上述算法,可得圆周率为__________.(参考数据:
)
已知函数,.
(Ⅰ)若在上的最大值为,求实数的值.
(Ⅱ)若对任意的,都有恒成立,求实数的取值范围.
已知等差数列的前项和为,若,,则( )
A. 45 B. 90 C. 120 D. 75
在四棱锥中,,,和都是边长为2的等边三角形,设在底面的射影为.
(1)求证:是中点;
(2)证明:;
(3)求点到面的距离.
将函数图象上所有点的横坐标变为原来的2倍,再向右平移个单位,得到函数的图象,则的图象的一条对称轴是( )
A. B. C. D.
已知,是虚数单位,若与互为共轭复数,则( )
在中,,边上的高等于,则( )
已知向量,,若∥,则________.