题目内容
加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a、b、c是常数),下图
记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为
A.
3.50分钟
B.
3.75分钟
C.
4.00分钟
D.
4.25分钟
若实数k满足0<k<9则曲线与曲线的
离心率相等
虚半轴长相等
实半轴长相等
焦距相等
某空间几何体的正视图是三角形,则该几何体不可能是
圆柱
圆锥
四面体
三棱柱
已知双曲线的两条渐近线分别为l1:y=2x,l2:y=-2x.
(1)求双曲线E的离心率;
(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一,四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由.
已知向量=(2,4),=(-1,1),则2-=
(5,7)
(5,9)
(3,7)
(3,9)
若x、y满足,则的最小值为________.
已知函数f(x)=2x3-3x.
(1)求f(x)在区间[-2,1]上的最大值;
(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;
(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)
如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.
(1)求证:AB∥FG;
(2)若PA⊥底面ABCDE,且AF⊥PE,求直线BC与平面ABF所成角的大小,并求线段PH的长.
已知向量a=(sinx,-1),b=(cosx,-),函数f(x)=(a+b)·a-2.
(Ⅰ)求函数f(x)的最小正周期T;
(Ⅱ)已知a、b、c分别为△ABC内角A、B、C的对边,其中A为锐角,且f(A)=1,求A,b和△ABC的面积S.