题目内容

1.    (本小题满分12分)

古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.

现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:

(1)    写出a1a2a3,并求出an

(2)    记,求和);

(其中表示所有的积的和)

(3)    证明:

 

【答案】

(1)(2)(3)略

【解析】(1)

事实上,要将个圆盘全部转移到C柱上,只需先将上面个圆盘转移到B柱上,需要次转移,然后将最大的那个圆盘转移到C柱上,需要一次转移,再将柱上的个圆盘转移到C柱上,需要次转移,所以有

,所以

(2)

    

    

(3) 令,则当

             

,所以对一切有:

另方面恒成立,所以对一切

综上所述有:

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网