题目内容
2.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-2)x+3a,x≥0}\end{array}\right.$满足对任意的x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则a的取值范围是(0,$\frac{1}{3}$].分析 由已知可得:函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-2)x+3a,x≥0}\end{array}\right.$在R上为减函数,进而$\left\{\begin{array}{l}0<a<1\\ a-2<0\\ 1≥3a\end{array}\right.$,解得a的取值范围.
解答 解:对任意的x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,
则函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-2)x+3a,x≥0}\end{array}\right.$在R上为减函数,
∴$\left\{\begin{array}{l}0<a<1\\ a-2<0\\ 1≥3a\end{array}\right.$,
解得a∈(0,$\frac{1}{3}$],
故答案为:(0,$\frac{1}{3}$]
点评 本题考查的知识点是分段函数的应用,正确理解分段函数的单调性是解答的关键.
练习册系列答案
相关题目
13.下列函数中,值域为(0,+∞)的是( )
A. | $y=\sqrt{x}$ | B. | y=2|x| | C. | y=x2+x+1 | D. | y=2-x |