题目内容
设函数f (x)=2cosx (cosx+
sinx)-1, x∈R.
(1)求f (x)的最小正周期T及单调递增区间;
(2)在
中,
,求f (A)的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507480304.png)
(1)求f (x)的最小正周期T及单调递增区间;
(2)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507496544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507527484.png)
(1)
,单调增区间为
,
;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507558309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507574727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507605324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507621597.png)
第一问首先化为单一三角函数
=
,然后利用周期公式和正弦函数的单调区间求解得到。由
得
第二问中,由已知得
,
,因此得到![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507761737.png)
即为所求。
解:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507808794.png)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507824457.png)
=
……………3分
(1) T=
……………………4分
由
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507902713.png)
故函数的单调增区间为
,
………7分
(2) 由已知得
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507746848.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507761737.png)
……………………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507652784.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507668609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507699976.png)
第二问中,由已知得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507714749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507746848.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507761737.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507621597.png)
解:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507808794.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507824457.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507668609.png)
(1) T=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507870472.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507886979.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507902713.png)
故函数的单调增区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507574727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507605324.png)
(2) 由已知得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507714749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507746848.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507761737.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214507621597.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目