题目内容
5.在平面直角坐标系xoy中,已知△ABC的顶点A(-5,0),C(5,0),顶点B在椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{11}$=1,则$\frac{sinA+sinC}{sinB}$=$\frac{6}{5}$.分析 首先根据所给的椭圆的方程写出椭圆的长轴的长,两个焦点之间的距离,根据正弦定理得到角的正弦值之比就等于边长之比,把边长代入,得到比值.
解答 解:椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{11}$=1的a=6,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{36-11}$=5,
△ABC的顶点A(-5,0),C(5,0),即为椭圆的两焦点,
由椭圆定义可得,AB+CB=2a=12,
又AC=10,
由正弦定理知$\frac{sinA+sinC}{sinB}$=$\frac{BC+AB}{AC}$=$\frac{12}{10}$=$\frac{6}{5}$,
故答案为:$\frac{6}{5}$.
点评 本题考查椭圆的性质和正弦定理的应用,解题的关键是把角的正弦值之比写成边长之比,进而和椭圆的参数结合起来,需注意特殊点的“巧合”.
练习册系列答案
相关题目
16.已知椭圆$\frac{x^2}{9}+\frac{y^2}{b^2}=1$(0<b<3),左、右焦点分别为F1、F2,过F1的直线交椭圆于 A,B两点,若|AF2|+|BF2|的最大值为8,则椭圆的离心率是( )
A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |