题目内容
如图,已知曲线C:y=1 |
x |
1 |
x+2-n |
(I)求a1,a2,a3的值;
(II)求数列{an}的通项公式;
(III)设△PiQiQi+1(i∈N*)和面积为Si,记f(n)=
n |
i=1 |
1 |
6 |
分析:(I)由题意知Q1(1,1),P1(1,
),Q2(
,
),P2(
,
),Q3(
,
),P3(
,
),Q4(
,
),由此可知a1=
,a2=
,a3=
.
(II)由(I)可猜想an=
(n∈N*),然后用数学归纳法证明.
(III)由题意知xn=(xn-xn-1)+(xn-1-xn-2)++(x2-x1)+x1=2-(n-1)+2-(n-2)++2-1+1=
=2-21-n,由此可知an•bn=(xn+1-xn)•(yn-yn+1)=2-n(
-
)=
(
-
)=
,所以Sn=
(a1b1+a2b2++anbn)≤
(
+
++
)=
•
=
(1-
)<
.
2 |
3 |
3 |
2 |
2 |
3 |
3 |
2 |
4 |
7 |
7 |
4 |
4 |
7 |
7 |
4 |
8 |
15 |
15 |
8 |
8 |
15 |
1 |
2 |
1 |
22 |
1 |
23 |
(II)由(I)可猜想an=
1 |
2 |
(III)由题意知xn=(xn-xn-1)+(xn-1-xn-2)++(x2-x1)+x1=2-(n-1)+2-(n-2)++2-1+1=
1-(
| ||
1-
|
1 |
xn |
1 |
xn+1 |
1 |
2n |
1 |
2-21-n |
1 |
2-2-n |
1 |
(2•2n-2)•(2•2n-1) |
1 |
2 |
1 |
2 |
1 |
3×2 |
1 |
3×22 |
1 |
3×2n |
1 |
12 |
1-(
| ||
1-
|
1 |
6 |
1 |
2n |
1 |
6 |
解答:解:(I)由题意知Q1(1,1),P1(1,
),Q2(
,
),P2(
,
),Q3(
,
),P3(
,
),Q4(
,
),
∴a1=
,a2=
,a3=
.(2分)
(II)由(I)猜想an=
(n∈N*),
下面用数学归纳法证明;
(1)当n=1时,a1=
已证得成立;
(2)假设当n=k时,猜想成立,
即ak=
,由已知得:ak=
=xk+1-xk.
当n=k+1时,由ak+1=xk+2-xk+1=
-
∵yk+2=
,yk+1=
,
∴ak+1=(xk+1+2-k-1)-(xk+2-k)
=(xk+1-xk)+(2-k-1-2-k)
=2-k+(2-k-1-2-k)
=2-k-1=
.
所以当n=k+1时,猜想也成立,综合(1)(2)得an=
(n∈N*)(6分)
(III)xn=(xn-xn-1)+(xn-1-xn-2)++(x2-x1)+x1=2-(n-1)+2-(n-2)++2-1+1=
=2-21-n(8分)
∴an•bn=(xn+1-xn)•(yn-yn+1)=2-n(
-
)=
(
-
)=
∵2•2n-2≥2n,2•2n-1≥3,∴an•bn≤
,(10分)
∴Sn=
(a1b1+a2b2++anbn)≤
(
+
++
)=
•
=
(1-
)<
.(12分)
2 |
3 |
3 |
2 |
2 |
3 |
3 |
2 |
4 |
7 |
7 |
4 |
4 |
7 |
7 |
4 |
8 |
15 |
15 |
8 |
8 |
15 |
∴a1=
1 |
2 |
1 |
22 |
1 |
23 |
(II)由(I)猜想an=
1 |
2 |
下面用数学归纳法证明;
(1)当n=1时,a1=
1 |
2 |
(2)假设当n=k时,猜想成立,
即ak=
1 |
2k |
1 |
2k |
当n=k+1时,由ak+1=xk+2-xk+1=
1 |
yk+2 |
1 |
yk+1 |
∵yk+2=
1 |
xk+1+2-k-1 |
1 |
xk+2-k |
∴ak+1=(xk+1+2-k-1)-(xk+2-k)
=(xk+1-xk)+(2-k-1-2-k)
=2-k+(2-k-1-2-k)
=2-k-1=
1 |
2k+1 |
所以当n=k+1时,猜想也成立,综合(1)(2)得an=
1 |
2n |
(III)xn=(xn-xn-1)+(xn-1-xn-2)++(x2-x1)+x1=2-(n-1)+2-(n-2)++2-1+1=
1-(
| ||
1-
|
∴an•bn=(xn+1-xn)•(yn-yn+1)=2-n(
1 |
xn |
1 |
xn+1 |
1 |
2n |
1 |
2-21-n |
1 |
2-2-n |
1 |
(2•2n-2)•(2•2n-1) |
1 |
3•2n |
∴Sn=
1 |
2 |
1 |
2 |
1 |
3×2 |
1 |
3×22 |
1 |
3×2n |
1 |
12 |
1-(
| ||
1-
|
1 |
6 |
1 |
2n |
1 |
6 |
点评:本题考查数列性质的综合应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目