ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÇúÏßC£ºy=
£¬Cn£ºy=
£¨n¡ÊN*£©£®´ÓCÉϵĵãQn£¨xn£¬yn£©×÷xÖáµÄ´¹Ïߣ¬½»CnÓÚµãPn£¬ÔÙ¹ýµãPn×÷yÖáµÄ´¹Ïߣ¬½»CÓÚµãQn+1£¨xn+1£¬yn+1£©É裬x1=1£¬an=xn+1-xn£¬bn=yn -yn+1£®
£¨1£©ÇóµãQ1¡¢Q2µÄ×ø±ê£»
£¨2£©ÇóÊýÁÐ{an} µÄͨÏʽ£»
£¨3£©¼ÇÊýÁÐ{an•yn+1} µÄÇ°nÏîºÍΪSn£¬ÇóÖ¤sn£¼
£®
1 |
x |
1 |
x+2-n |
£¨1£©ÇóµãQ1¡¢Q2µÄ×ø±ê£»
£¨2£©ÇóÊýÁÐ{an} µÄͨÏʽ£»
£¨3£©¼ÇÊýÁÐ{an•yn+1} µÄÇ°nÏîºÍΪSn£¬ÇóÖ¤sn£¼
1 |
3 |
·ÖÎö£º£¨1£©ÓÉQn£¨xn£¬yn£©£¬Qn+1£¨xn+1£¬yn+1£©£¬ÖªµãPnµÄ×ø±êΪ£¨xn£¬yn+1£©£¬ÓÉ´ËÄÜÇó³öµãQ1¡¢Q2µÄ×ø±ê£®
£¨2£©ÓÉQn£¬Qn+1ÔÚÇúÏßCÉÏ£¬Öªyn=
£¬yn+1=
£¬ÓÉPnÔÚÇúÏßCnÉÏ£¬Öªyn+1=
£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an} µÄͨÏʽ£®
£¨3£©ÓÉxn=£¨xn-xn-1£©+£¨xn-1-xn-2£©+¡+£¨x2-x1£©+x1=2-£¨n-1£©+2-£¨n-2£©+¡+2-1+1=1-
=2-21-n£¬Öªan•bn=£¨xn+1-xn£©•£¨yn-yn+1£©=2-n(
-
)=
(
-
)=
£¬ÓÉ´ËÈëÊÖÄܹ»Ö¤Ã÷sn£¼
£®
£¨2£©ÓÉQn£¬Qn+1ÔÚÇúÏßCÉÏ£¬Öªyn=
1 |
xn |
1 |
xn+1 |
1 |
xn+2-n |
£¨3£©ÓÉxn=£¨xn-xn-1£©+£¨xn-1-xn-2£©+¡+£¨x2-x1£©+x1=2-£¨n-1£©+2-£¨n-2£©+¡+2-1+1=1-
1-(
| ||
1-
|
1 |
xn |
1 |
xn+1 |
1 |
2n |
1 |
2-21-n |
1 |
2-2-n |
1 |
(2•2n-2)• (2•2n-1) |
1 |
3 |
½â´ð£º½â£º£¨1£©¡ßQn£¨xn£¬yn£©£¬Qn+1£¨xn+1£¬yn+1£©£¬
¡àµãPnµÄ×ø±êΪ£¨xn£¬yn+1£©
¡àQ1(1£¬1)£¬P(1£¬
) £¬Q2(
£¬
)£®-----------------------------------£¨2·Ö£©
£¨2£©¡ßQn£¬Qn+1ÔÚÇúÏßCÉÏ£¬
¡àyn=
£¬yn+1=
£¬
ÓÖ¡ßPnÔÚÇúÏßCnÉÏ£¬
¡àyn+1=
£¬--------------------------------£¨4·Ö£©
¡àxn+1=xn+2-n£¬
¡àan=2-n£®-----------------------------------------£¨6·Ö£©
£¨3£©xn=£¨xn-xn-1£©+£¨xn-1-xn-2£©+¡+£¨x2-x1£©+x1
=2-£¨n-1£©+2-£¨n-2£©+¡+2-1+1
=1-
=2-21-n£®-------------------£¨9·Ö£©
¡àan•bn=£¨xn+1-xn£©•£¨yn-yn+1£©
=2-n(
-
)
=
(
-
)
=
£¬
¡ß2•2n-2¡Ý2n£¬2•2n-1¡Ý3£¬
¡àan•bn¡Ü
£®--------------------------------£¨12·Ö£©
¡àSn=a1b1+a2b2+¡+anbn
¡Ü
+
+¡+
=
•
=
(1-
)£¼
-----------------------£¨14·Ö£©
¡àµãPnµÄ×ø±êΪ£¨xn£¬yn+1£©
¡àQ1(1£¬1)£¬P(1£¬
2 |
3 |
3 |
2 |
2 |
3 |
£¨2£©¡ßQn£¬Qn+1ÔÚÇúÏßCÉÏ£¬
¡àyn=
1 |
xn |
1 |
xn+1 |
ÓÖ¡ßPnÔÚÇúÏßCnÉÏ£¬
¡àyn+1=
1 |
xn+2-n |
¡àxn+1=xn+2-n£¬
¡àan=2-n£®-----------------------------------------£¨6·Ö£©
£¨3£©xn=£¨xn-xn-1£©+£¨xn-1-xn-2£©+¡+£¨x2-x1£©+x1
=2-£¨n-1£©+2-£¨n-2£©+¡+2-1+1
=1-
1-(
| ||
1-
|
=2-21-n£®-------------------£¨9·Ö£©
¡àan•bn=£¨xn+1-xn£©•£¨yn-yn+1£©
=2-n(
1 |
xn |
1 |
xn+1 |
=
1 |
2n |
1 |
2-21-n |
1 |
2-2-n |
=
1 |
(2•2n-2)• (2•2n-1) |
¡ß2•2n-2¡Ý2n£¬2•2n-1¡Ý3£¬
¡àan•bn¡Ü
1 |
3•2n |
¡àSn=a1b1+a2b2+¡+anbn
¡Ü
1 |
3¡Á2 |
1 |
3¡Á22 |
1 |
3¡Á2n |
1 |
6 |
1-(
| ||
1-
|
1 |
3 |
1 |
2n |
1 |
3 |
µãÆÀ£º±¾Ì⿼²éµã×ø±êµÄÇ󷨡¢ÇóÊýÁеÄͨÏʽ¡¢ÇóÖ¤sn£¼
£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
1 |
3 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿