题目内容

已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线C1的方程为ρ2=8ρsinθ-15,曲线C2的方程为
x=2
2
cosα
y=
2
sinα
(α为参数).
(1)将C1的方程化为直角坐标方程;
(2)若C2上的点Q对应的参数为α=
4
,P为C1上的动点,求PQ的最小值.
(1)曲线C1的方程为ρ2=8ρsinθ-15化为直角坐标方程为:
x2+y2-8y+15=0;(3分)其圆心坐标(0,4),半径为:1.
(2)当α=
4
,时,得Q(-2,1)它到曲线C1的圆心C1(0,4)的距离为:
13

∴PQ的最小值
13
-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网