题目内容
已知二次函数f(x)满足条件f(0)=1,f(x+1)-f(x)=2x.
(1)求f(x);
(2)求f(x)在区间[-1,1]上的最大值和最小值.
【答案】
(1) f(x)=x2-x+1 (2) f(x)min= f(x)max=3
【解析】解:(1)设函数f(x)=ax2+bx+c(a≠0).
∵f(0)=1,∴c=1.
∵f(x+1)-f(x)=2x,
∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,
即2ax+a+b=2x.
∴∴
∴f(x)=x2-x+1.
(2)∵f(x)=x2-x+1=2+,
∴f(x)min=f=,
f(x)max=f(-1)=3.
练习册系列答案
相关题目