题目内容
12.已知一个四面体的所有棱长都为2,则该四面体的外接球表面积为6π.分析 将正四面体补成一个正方体,正四面体的外接球的直径为正方体的对角线长,即可得出结论.
解答 解:将正四面体补成一个正方体,则正方体的棱长为$\sqrt{2}$,正方体的对角线长为$\sqrt{6}$,
∵正四面体的外接球的直径为正方体的对角线长,
∴外接球的表面积的值为4π•$(\frac{\sqrt{6}}{2})^{2}$=6π.
故答案为:6π.
点评 本题考查球的内接多面体等基础知识,考查运算求解能力,考查逻辑思维能力,属于基础题.
练习册系列答案
相关题目
2.将函数y=cos2x+$\sqrt{3}$sin2x(x∈R)的图象向左平移m(m>0)个长度单位后,所得到的图象关于y轴对称,则m的最小值是( )
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
3.已知函数 f(x)=$\left\{{\begin{array}{l}{{x^2}-2x,x≤0}\\{sinx,x>0}\end{array}}$,若关于x的方程f(x)=kx-1没有实根,则实数k的取值范围是( )
A. | (-∞,-4) | B. | (-4,0) | C. | (-∞,-1) | D. | (-1,0) |
20.若变量x,y满足x+5y+13=0(-3≤x≤2,且x≠1),则$\frac{y-1}{x-1}$的取值范围是( )
A. | k≥$\frac{3}{4}$或k≤-4 | B. | -4≤k≤$\frac{3}{4}$ | C. | $\frac{3}{4}$≤k≤4 | D. | -$\frac{3}{4}$≤k≤4 |
7.已知△ABC的顶点坐标分别是A(5,1),B(1,1),C(1,3),则△ABC的外接圆方程为( )
A. | (x+3)2+(y+2)2=5 | B. | (x+3)2+(y+2)2=20 | C. | (x-3)2+(y-2)2=20 | D. | (x-3)2+(y-2)2=5 |