题目内容
设分别是双曲线
的左、右焦点,若双曲线上存在点
,使
且
,则双曲线的离心率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
B
解析
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知椭圆的离心率为,焦点是
,则椭圆方程为 ( ■ )
A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆C:的离心率为
,过右焦点
且斜率为
的直线与椭圆C相交于
、
两点.若
,则
=( )
A.![]() | B.![]() | C.2 | D.![]() |
已知双曲线的一条渐近线方程为
,则该双曲线的离心率为
A.![]() | B.![]() | C.![]() | D.2 |
椭圆满足这样的光学性质:从椭圆的一个焦点发射的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现有一个水平放置的椭圆形台球盘,满足方程,点
是它的两个焦点.当静止的小球从点
开始出发,沿直线运动,经椭圆壁反射后再回到点
时,此时小球经过的路程可能是 ( )
A.32或4或![]() | B.![]() ![]() |
C.28或4或![]() | D.32或28或4 |
![](http://thumb.zyjl.cn/pic5/tikupic/61/c1/610c11d982a8d1037f6ee9e433da52f2.png)
过点P(2,-2)且与- y 2=1有相同渐近线的双曲线方程是 ( )
A.![]() | B.![]() | C.![]() | D.![]() |
椭圆上一点M到焦点
的距离为2,
是
的中点,则
等于( )
A.2 | B.4 | C.6 | D.![]() |
若直线过点
与双曲线
只有一个公共点,则这样的直线有
A.0条 | B.1条 | C.2条 | D.4条 |