题目内容
在直角坐标系中,已知中心在原点,离心率为
的椭圆E的一个焦点为圆
的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线
,当直线
都与圆
相切时,求P点坐标.
(1);(2)
.
解析试题分析:(1)圆心坐标是已知的,故椭圆的焦点是已知的,从而半焦距已知了,又有离心率,故半长轴长
也能求出,从而求出
,而根据题意,椭圆方程是标准方程,可其方程易得;(2)设P点坐标为
,再设一条切线的斜率为
,则另一条切线的斜率为
,三个未知数
需要三个方程,点P在椭圆上,一个等式,两条直线都圆的切线,利用圆心到切线的距离等于圆的半径又得到两个等式,三个等量关系,三个未知数理论上可解了,当然具体解题时,可设切线斜率为
,则点斜率式写出直线方程,利用圆心到切线距离等于圆半径得出关于
的方程,而
是这个方程的两解,由韦达定理得
,这个结果又是
,就列出了关于P点坐标的一个方程,再由P点在椭圆上,可解出P点坐标.
试题解析:(1)圆的标准方程为,圆心为
,所以
,又
,
,
,而据题意椭圆的方程是标准方程,故其方程为
. 4分
(2)设,得
∵,依题意
到
的距离为
整理得同理
∴是方程
的两实根 10分
12分
∴ 14分
16分
考点:(1)椭圆的标准方程;(2)圆的切线.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目