题目内容

设P(x0,y0)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上一动点,F1,F2是椭圆的两焦点,当x0=
 
时,|PF1||PF2|的积最大为
 
;当x0=
 
时,|PF1||PF2|的积最小为
 
分析:当点P位于椭圆在x轴上的顶点处时,|PF1||PF2|的积最大;当点P位于椭圆在y轴上的顶点处时,|PF1||PF2|的积最小.
解答:解:∵|PF1|+|PF2|=2a,
∴|PF1||PF2|(
|PF1| +|PF2|
2
)
2
=a2

当且仅当|PF1|=|PF2|时取等号,
∴当|PF1||PF2|的积最大时,x0=0.
结合椭圆的图象可知,当点P位于(-a,0)或(a,0)时,|PF1||PF2|的积最小,其最小值为(a+c)(a-c)=a2-c2=b2
此时x0=-a或x0=a.
答案:0,a2,-a或a,b2
点评:作出椭圆的草图,结合图象效果更好.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网