题目内容
已知函数的图象在点处的切线方程是= 。
3
【解析】略
已知函数的图象在点处的切线斜率为.
(Ⅰ)求实数的值;
(Ⅱ)判断方程根的个数,证明你的结论;
(Ⅲ)探究:是否存在这样的点,使得曲线在该点附近的左、右的两部分分别位于曲线在该点处切线的两侧?若存在,求出点A的坐标;若不存在,说明理由.
已知函数的图象在点处的切线与直线平行,若数列的前项和为,则的值为 .
已知函数的图象在点处的切线的斜率为3,数列
的前项和为,则的值为( )
A、 B、 C、 D、
(本题满分14分)已知函数的图象在点处的切线的斜率为,且在处取得极小值。
(1)求的解析式;
(2)已知函数定义域为实数集,若存在区间,使得在的值域也是,称区间为函数的“保值区间”.
①当时,请写出函数的一个“保值区间”(不必证明);
②当时,问是否存在“保值区间”?若存在,写出一个“保值区间”并给予证明;若不存在,请说明理由.