题目内容

如图,平面四边形的4个顶点都在球的表面上,为球的直径,为球面上一点,且平面 ,点的中点.
(1) 证明:平面平面
(2) 求点到平面的距离.

(1)详见解析;(2)

解析试题分析:本小题通过立体几何的相关知识,具体涉及到直线与直线垂直的判断、线面的平行关系的判断以及二面角的求法等有关知识,考查考生的空间想象能力、推理论证能力,对学生的数形结合思想的考查也有涉及,本题是一道立体几何部分的综合题,属于中档难度试题.(1)借助几何体的性质,得到,借助线面平行的判定定理得到线面平行,进而利用面面平行的判定定理证明平面平面;(2)利用等体积求解几何体的高,即为点到平面的距离.
试题解析:(1) 证明:
平行且等于,即四边形为平行四边形,所以.
                                                                          (6分)
(2) 由图可知,即
,即点到平面的距离为.                    (12分)
考点:(1)平行关系;(2)点面距.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网