题目内容
(2011•广州模拟)已知实数x,y满足
,若目标函数z=ax+y(a≠0)取得最小值时最优解有无数个,则实数a的值为( )
|
分析:将目标函数z=ax+y化成斜截式方程后得:y=-ax+z,目标函数值Z看成是直线族y=-ax+z的截距,当直线族y=-ax+z的斜率与直线AB的斜率相等时,目标函数z=ax+y取得最小值的最优解有无数多个,由此不难得到a的值.
解答:解:∵目标函数z=ax+y,
∴y=-ax+z.
故目标函数值Z是直线族y=-ax+z的截距
当直线族y=-ax+z的斜率与直线AB的斜率相等时,
目标函数z=ax+y取得最小值的最优解有无数多个,
直线AB:2x-2y+1=0的斜率为1,
此时,-a=1
即a=-1
故选A.
∴y=-ax+z.
故目标函数值Z是直线族y=-ax+z的截距
当直线族y=-ax+z的斜率与直线AB的斜率相等时,
目标函数z=ax+y取得最小值的最优解有无数多个,
直线AB:2x-2y+1=0的斜率为1,
此时,-a=1
即a=-1
故选A.
点评:本题考查线性规划最优解的判定,属于该知识的逆用题型,利用最优解的特征,判断出最优解的位置求参数,属于基础题.
练习册系列答案
相关题目