题目内容

【题目】已知函数f(x)=sinx,若存在x1 , x2 , …,xn满足0≤x1<x2<…<xn≤nπ,n∈N+ , 且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm1)﹣f(xm)|=12,(m≥2,m∈N+),当m取最小值时,n的最小值为

【答案】6
【解析】解:y=sinx对任意xi , xj(i,j=1,2,3,…,m),都有|f(xi)﹣f(xj)|≤f(x)max﹣f(x)min=2,
要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,
考虑0≤x1<x2<…<xm≤nπ,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm1)﹣f(xm)|=12,
则按下图取值即可满足条件,

∴m的最小值为8,此时n的值为6.
所以答案是:6.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网