题目内容
设![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_ST/0.png)
(Ⅰ)当x>1时,f(x)<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_ST/1.png)
(Ⅱ)当1<x<3时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_ST/2.png)
【答案】分析:(Ⅰ)证法一,记g(x)=lnx+
-1-
(x-1),可得到g′(x)=
+
-
<0,从而g(x)为减函数,又g(1)=0,当x>1时,g(x)<g(1),问题解决;
证法二,利用均值不等式,可证得,当x>1时,
<
+
.①,令k(x)=lnx-x+1,同理可证k(x)为减函数,于是有lnx<x-1②,由①②可证得结论;
(Ⅱ)记h(x)=f(x)-
,可求得h′(x)=
-
<
<0(1<x<3),从而h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,从而证得结论;
解答:证明:(Ⅰ)(证法一):
记g(x)=lnx+
-1-
(x-1),则当x>1时,g′(x)=
+
-
<0,
又g(1)=0,有g(x)<0,即f(x)<
( x-1);…4′
(证法二)由均值不等式,当x>1时,2
<x+1,故
<
+
.①
令k(x)=lnx-x+1,则k(1)=0,k′(x)=
-1<0,故k(x)<0,即lnx<x-1②
由①②得当x>1时,f(x)<
( x-1);
(Ⅱ)记h(x)=f(x)-
,由(Ⅰ)得,
h′(x)=
+
-![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/27.png)
=
-![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/29.png)
<
-![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/31.png)
=
,
令g(x)=(x+5)3-216x,则当1<x<3时,g′(x)=3(x+5)2-216<0,
∴g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,
∴h′(x)<0,…10′
因此,h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,
于是,当1<x<3时,f(x)<
…12′
点评:本题考查利用导数求闭区间上函数的最值,着重考查构造函数的思想,考查分析、转化与综合计算与应用解决问题的能力,属于难题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/4.png)
证法二,利用均值不等式,可证得,当x>1时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/7.png)
(Ⅱ)记h(x)=f(x)-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/11.png)
解答:证明:(Ⅰ)(证法一):
记g(x)=lnx+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/16.png)
又g(1)=0,有g(x)<0,即f(x)<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/17.png)
(证法二)由均值不等式,当x>1时,2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/21.png)
令k(x)=lnx-x+1,则k(1)=0,k′(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/22.png)
由①②得当x>1时,f(x)<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/23.png)
(Ⅱ)记h(x)=f(x)-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/24.png)
h′(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/27.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/29.png)
<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/31.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/32.png)
令g(x)=(x+5)3-216x,则当1<x<3时,g′(x)=3(x+5)2-216<0,
∴g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,
∴h′(x)<0,…10′
因此,h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,
于是,当1<x<3时,f(x)<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173724937559941/SYS201311031737249375599021_DA/33.png)
点评:本题考查利用导数求闭区间上函数的最值,着重考查构造函数的思想,考查分析、转化与综合计算与应用解决问题的能力,属于难题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目