题目内容
(本小题满分12分)
已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有
a2m-1+a2n-1=2am+n-1+2(m-n)2
(Ⅰ)求a3,a5;
(Ⅱ)设bn=a2n+1-a2n-1(n∈N*),证明:{bn}是等差数列;
(Ⅲ)设cn=(an+1-an)qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn.
本小题主要考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.
解:(1)由题意,零m=2,n-1,可得a3=2a2-a1+2=6
再令m=3,n=1,可得a5=2a3-a1+8=20………………………………2分
(2)当n∈N *时,由已知(以n+2代替m)可得
a2n+3+a2n-1=2a2n+1+8
于是[a2(n+1)+1-a2(n+1)-1]-(a2n+1-a2n-1)=8
即 bn+1-bn=8
所以{bn}是公差为8的等差数列………………………………………………5分
(3)由(1)(2)解答可知{bn}是首项为b1=a3-a1=6,公差为8的等差数列
则bn=8n-2,即a2n+=1-a2n-1=8n-2
另由已知(令m=1)可得
an=-(n-1)2.
那么an+1-an=-2n+1
=-2n+1
=2n
于是cn=2nqn-1.
当q=1时,Sn=2+4+6+……+2n=n(n+1)
当q≠1时,Sn=2·q0+4·q1+6·q2+……+2n·qn-1.
两边同乘以q,可得
qSn=2·q1+4·q2+6·q3+……+2n·qn.
上述两式相减得
(1-q)Sn=2(1+q+q2+……+qn-1)-2nqn
=2·-2nqn
=2·
所以Sn=2·
综上所述,Sn=…………………………12分