题目内容
7.如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC=6,EC=6,则AD的长为$\frac{3}{2}$.分析 连接DE,证明△DBE∽△CBA,利用AB=2AC,结合角平分线性质,即可证明BE=2AD,根据割线定理得BD•BA=BE•BC,从而可求AD的长.
解答 解:连接DE,
∵ACED是圆内接四边形,
∴∠BDE=∠BCA,
又∠DBE=∠CBA,∴△DBE∽△CBA,即有$\frac{BE}{BA}=\frac{DE}{CA}$,
又∵AB=2AC,∴BE=2DE,
∵CD是∠ACB的平分线,∴AD=DE,
∴BE=2AD,
设AD=t,则BE=2t,BC=2t+6,
根据割线定理得BD•BA=BE•BC,
即(6-t)×6=2t•(2t+6),即2t2+9t-18=0,
解得t=$\frac{3}{2}$或-6(舍去),则AD=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$
点评 本题考查三角形相似,考查角平分线性质、割线定理,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
18.2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.试确定x,y,p,q的值,并补全频率分布直方图.
网购金额 (单位:元) | 频数 | 频率 |
(0,500] | 5 | 0.05 |
(500,1000] | x | p |
(1000,1500] | 15 | 0.15 |
(1500,2000] | 25 | 0.25 |
(2000,2500] | 30 | 0.30 |
(2500,3000] | y | q |
合计 | 100 | 1.00 |