题目内容
设A(x1,y1),B(x2,y2)是函数f(x)=1 |
2 |
x |
1-x |
OM |
1 |
2 |
OA |
OB |
1 |
2 |
(1)求证:M点的纵坐标为定值;
(2)若Sn=
n-1 |
i=1 |
i |
n |
(3)已知an=
|
分析:(1)由题设条件知M是AB的中点,由中点坐标公式可以求出M点的给坐标.
(2)Sn=
f(
)=f(
)+f(
)++f(
),即Sn=f(
)+f(
)++f(
)
以上两式相加后两边再同时除以2就得到Sn.
(3)当n≥2时,根据题设条件,由Tn<λ(Sn+1+1)得
<λ•
,
∴λ>
=
=
,再由均值不等式求出λ的取值范围.
(2)Sn=
n-1 |
i=1 |
i |
n |
1 |
n |
2 |
n |
n-1 |
n |
n-1 |
n |
n-2 |
n |
1 |
n |
以上两式相加后两边再同时除以2就得到Sn.
(3)当n≥2时,根据题设条件,由Tn<λ(Sn+1+1)得
2n |
n+2 |
n+2 |
2 |
∴λ>
4n |
(n+2)2 |
4n |
n2+4n+4 |
4 | ||
n+
|
解答:解:(1)∵
=
(
+
)
∴M是AB的中点,设M点的坐标为M(x,y),
由
(x1+x2)=x=
,得x1+x2=1,则x2=1-x1
而y=
=
[(
+log2
)+(
+log2
)]
=
[(
+log2
)+(
+log2
)]=
∴M点的纵坐标为定值
(2)由(1)知若x1+x2=1则f(x1)+f(x2)=y1+y2=1,Sn=
f(
)=f(
)+f(
)++f(
)
即Sn=f(
)+f(
)++f(
)
以上两式相加得:2Sn=[f(
)+f(
)]+[f(
)+f(
)]+[f(
)+f(
)]═
=n-1
∴Sn=
(3)当n≥2时,an=
=
=4(
-
)
∴Tn=a1+a2+…+an=
+4[(
-
)+(
-
)++(
-
)]=
+4(
-
)=
由Tn<λ(Sn+1+1)得
<λ•
∴λ>
=
=
∵n+
≥4,当且仅当n=2时“=”成立
∴
≤
=
.
因此λ>
,即λ的取值范围为(
,+∞)
OM |
1 |
2 |
OA |
OB |
∴M是AB的中点,设M点的坐标为M(x,y),
由
1 |
2 |
1 |
2 |
而y=
y1+y2 |
2 |
1 |
2 |
1 |
2 |
x1 |
1-x1 |
1 |
2 |
x2 |
1-x2 |
=
1 |
2 |
1 |
2 |
x1 |
1-x1 |
1 |
2 |
1-x1 |
x1 |
1 |
2 |
∴M点的纵坐标为定值
1 |
2 |
(2)由(1)知若x1+x2=1则f(x1)+f(x2)=y1+y2=1,Sn=
n-1 |
i=1 |
i |
n |
1 |
n |
2 |
n |
n-1 |
n |
即Sn=f(
n-1 |
n |
n-2 |
n |
1 |
n |
以上两式相加得:2Sn=[f(
1 |
n |
n-1 |
n |
2 |
n |
n-2 |
n |
n-1 |
n |
1 |
n |
| ||
(n-1)个 |
∴Sn=
n-1 |
2 |
(3)当n≥2时,an=
1 |
(Sn+1)(Sn+1+1) |
4 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
∴Tn=a1+a2+…+an=
2 |
3 |
1 |
3 |
1 |
4 |
1 |
4 |
1 |
5 |
1 |
n+1 |
1 |
n+2 |
2 |
3 |
1 |
3 |
1 |
n+2 |
2n |
n+2 |
由Tn<λ(Sn+1+1)得
2n |
n+2 |
n+2 |
2 |
∴λ>
4n |
(n+2)2 |
4n |
n2+4n+4 |
4 | ||
n+
|
∵n+
4 |
n |
∴
4 | ||
n+
|
4 |
4+4 |
1 |
2 |
因此λ>
1 |
2 |
1 |
2 |
点评:本题考查了中点坐标公式、数列求和、均值不等式、对数性质等知识点,难说度较大,解题时要认真审题,仔细作答.
练习册系列答案
相关题目