题目内容

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上任意两点,且
OM
=
1
2
(
OA
+
OB
)
,已知M的横坐标为
1
2

(1)求证:M点的纵坐标为定值;
(2)若Sn=
n-1
i=1
f(
i
n
)
,其中n∈N*,且n≥2,求Sn
(3)已知an=
2
3
,n=1
1
(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,Tn<λ(Sn+1+1),对一切n∈N*都成立,试求λ的取值范围.
分析:(1)由题设条件知M是AB的中点,由中点坐标公式可以求出M点的给坐标.
(2)Sn=
n-1
i=1
f(
i
n
)
=f(
1
n
)+f(
2
n
)++f(
n-1
n
)
,即Sn=f(
n-1
n
)+f(
n-2
n
)++f(
1
n
)

以上两式相加后两边再同时除以2就得到Sn
(3)当n≥2时,根据题设条件,由Tn<λ(Sn+1+1)得
2n
n+2
<λ•
n+2
2

λ>
4n
(n+2)2
=
4n
n2+4n+4
=
4
n+
4
n
+4
,再由均值不等式求出λ的取值范围.
解答:解:(1)∵
OM
=
1
2
(
OA
+
OB
)

∴M是AB的中点,设M点的坐标为M(x,y),
1
2
(x1+x2)=x=
1
2
,得x1+x2=1,则x2=1-x1
y=
y1+y2
2
=
1
2
[(
1
2
+log2
x1
1-x1
)+(
1
2
+log2
x2
1-x2
)]

=
1
2
[(
1
2
+log2
x1
1-x1
)+(
1
2
+log2
1-x1
x1
)]=
1
2

∴M点的纵坐标为定值
1
2

(2)由(1)知若x1+x2=1则f(x1)+f(x2)=y1+y2=1,Sn=
n-1
i=1
f(
i
n
)
=f(
1
n
)+f(
2
n
)++f(
n-1
n
)

Sn=f(
n-1
n
)+f(
n-2
n
)++f(
1
n
)

以上两式相加得:2Sn=[f(
1
n
)+f(
n-1
n
)]+[f(
2
n
)+f(
n-2
n
)]+[f(
n-1
n
)+f(
1
n
)]
1+1++1
(n-1)个
=n-1

Sn=
n-1
2

(3)当n≥2时,an=
1
(Sn+1)(Sn+1+1)
=
4
(n+1)(n+2)
=4(
1
n+1
-
1
n+2
)

∴Tn=a1+a2+…+an=
2
3
+4[(
1
3
-
1
4
)+(
1
4
-
1
5
)++(
1
n+1
-
1
n+2
)]
=
2
3
+4(
1
3
-
1
n+2
)=
2n
n+2

由Tn<λ(Sn+1+1)得
2n
n+2
<λ•
n+2
2

λ>
4n
(n+2)2
=
4n
n2+4n+4
=
4
n+
4
n
+4

n+
4
n
≥4
,当且仅当n=2时“=”成立
4
n+
4
n
+4
4
4+4
=
1
2

因此λ>
1
2
,即λ的取值范围为(
1
2
,+∞)
点评:本题考查了中点坐标公式、数列求和、均值不等式、对数性质等知识点,难说度较大,解题时要认真审题,仔细作答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网