ÌâÄ¿ÄÚÈÝ
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊǺ¯Êýf£¨x£©=
+log2
ͼÏóÉÏÈÎÒâÁ½µã£¬ÇÒ
=
£¨
+
£©£¬ÒÑÖªµãMµÄºá×ø±êΪ
£¬ÇÒÓÐSn=f£¨
£©+f£¨
£©+¡+f£¨
£©£¬ÆäÖÐn¡ÊN*ÇÒn¡Ý2£¬
£¨1£©ÇóµãMµÄ×Ý×ø±êÖµ£»
£¨2£©Çós2£¬s3£¬s4¼°Sn£»
£¨3£©ÒÑÖªan=
£¬ÆäÖÐn¡ÊN*£¬ÇÒTnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÈôTn¡Ü¦Ë£¨Sn+1+1£©¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇó¦ËµÄ×îСÕýÕûÊýÖµ£®
1 |
2 |
x |
1-x |
OM |
1 |
2 |
OA |
OB |
1 |
2 |
1 |
n |
2 |
n |
n-1 |
n |
£¨1£©ÇóµãMµÄ×Ý×ø±êÖµ£»
£¨2£©Çós2£¬s3£¬s4¼°Sn£»
£¨3£©ÒÑÖªan=
1 |
(Sn+1)(Sn+1+1) |
·ÖÎö£º£¨1£©ÓÉ
=
£¨
+
£©ÖªMΪÏ߶ÎABµÄÖе㣬ÓÉMµÄºá×ø±êΪ
µÃx1+x2=1£¬ÓÉ´Ë¿ÉÇóµÃy1+y2£¬´Ó¶ø¿ÉµÃµãMµÄ×Ý×ø±ê£»
£¨2£©¸ù¾ÝSn=f£¨
£©+f£¨
£©+¡+f£¨
£©£¬·Ö±ðÁîn=2£¬3£¬4¼´¿ÉÇóµÃs2£¬s3£¬s4£»ÓÉ£¨1£©Öª£¬ÓÉ
+
=1£¬µÃf£¨
£©+f£¨
£©=1£¬´Ó¶ø¿ÉÇóµÃ2Sn£»
£¨3£©Ïȱíʾ³öan£¬ÀûÓÃÁÑÏîÏàÏû·¨ÇóµÃTn£¬·ÖÀë³ö²ÎÊý¦Ëºóת»¯ÎªÇóº¯ÊýµÄ×îÖµ¿É½â¾ö£¬ÀûÓûù±¾²»µÈʽ¿ÉµÃ×îÖµ£»
OM |
1 |
2 |
OA |
OB |
1 |
2 |
£¨2£©¸ù¾ÝSn=f£¨
1 |
n |
2 |
n |
n-1 |
n |
1 |
n |
n-1 |
n |
1 |
n |
n-1 |
n |
£¨3£©Ïȱíʾ³öan£¬ÀûÓÃÁÑÏîÏàÏû·¨ÇóµÃTn£¬·ÖÀë³ö²ÎÊý¦Ëºóת»¯ÎªÇóº¯ÊýµÄ×îÖµ¿É½â¾ö£¬ÀûÓûù±¾²»µÈʽ¿ÉµÃ×îÖµ£»
½â´ð£º½â£º£¨1£©ÒÀÌâÒ⣬ÓÉ
=
£¨
+
£©ÖªMΪÏ߶ÎABµÄÖе㣬
ÓÖÒòΪMµÄºá×ø±êΪ
£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
¡à
=
£¬¼´x1+x2=1£¬
¡ày1+y2=1+log2(
•
)=1+log21=1£¬
ËùÒÔ
=
£¬
¼´µãMµÄºá×ø±êΪ¶¨Öµ
£»
£¨2£©S2=f(
)=
+log2
=
£¬
S3=f(
)+f(
)=
+log2
+
+log2
=1£¬
S4=f(
)+f(
)+f(
)=
+log2
+
+log2
+
+log2
=
£¬
ÓÉ£¨1£©Öª£¬ÓÉ
+
=1£¬µÃf£¨
£©+f£¨
£©=1£¬
ÓÖSn=f£¨
£©+f£¨
£©+¡+f£¨
£©=f£¨
£©+f£¨
£©+¡+f£¨
£©£¬
ËùÒÔ2Sn=£¨n-1£©¡Á1£¬¼´Sn=
£¨n¡ÊN*ÇÒn¡Ý2£©£»
£¨3£©µ±n¡Ý2ʱ£¬an=
=
£¬
ÓÖn=1ʱ£¬a1=
=
Ò²Êʺϣ¬
ËùÒÔan=
(n¡ÊN*)£¬
¡àTn=
+
+¡+
=4£¨
-
+
-
+¡+
-
£©
=4£¨
-
£©=
£¨n¡ÊN*£©£¬
ÓÉ
¡Ü¦Ë(
+1)ºã³ÉÁ¢£¨n¡ÊN*£©ÍƵæˡÝ
£¬
¶ø
=
¡Ü
=
£¨µ±ÇÒ½öµ±n=2È¡µÈºÅ£©£¬
¡à¦Ë¡Ý
£¬¡à¦ËµÄ×îСÕýÕûÊýΪ1£®
OM |
1 |
2 |
OA |
OB |
ÓÖÒòΪMµÄºá×ø±êΪ
1 |
2 |
¡à
x1+x2 |
2 |
1 |
2 |
¡ày1+y2=1+log2(
x1 |
1-x1 |
x2 |
1-x2 |
ËùÒÔ
y1+y2 |
2 |
1 |
2 |
¼´µãMµÄºá×ø±êΪ¶¨Öµ
1 |
2 |
£¨2£©S2=f(
1 |
2 |
1 |
2 |
| ||
1-
|
1 |
2 |
S3=f(
1 |
3 |
2 |
3 |
1 |
2 |
| ||
1-
|
1 |
2 |
| ||
1-
|
S4=f(
1 |
4 |
2 |
4 |
3 |
4 |
1 |
2 |
| ||
1-
|
1 |
2 |
| ||
1-
|
1 |
2 |
| ||
1-
|
3 |
2 |
ÓÉ£¨1£©Öª£¬ÓÉ
1 |
n |
n-1 |
n |
1 |
n |
n-1 |
n |
ÓÖSn=f£¨
1 |
n |
2 |
n |
n-1 |
n |
n-1 |
n |
n-2 |
n |
1 |
n |
ËùÒÔ2Sn=£¨n-1£©¡Á1£¬¼´Sn=
n-1 |
2 |
£¨3£©µ±n¡Ý2ʱ£¬an=
1 |
(Sn+1)(Sn+1+1) |
4 |
(n+1)(n+2) |
ÓÖn=1ʱ£¬a1=
4 |
2¡Á3 |
2 |
3 |
ËùÒÔan=
4 |
(n+1)(n+2) |
¡àTn=
4 |
2¡Á3 |
4 |
3¡Á4 |
4 |
(n+1)(n+2) |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
=4£¨
1 |
2 |
1 |
n+2 |
2n |
n+2 |
ÓÉ
2n |
n+2 |
n |
2 |
4n |
n2+4n+4 |
¶ø
4n |
n2+4n+4 |
4 | ||
n+
|
4 |
4+4 |
1 |
2 |
¡à¦Ë¡Ý
1 |
2 |
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë²»µÈʽ¡¢ÊýÁÐÓëÏòÁ¿µÄ×ۺϣ¬¿¼²éºã³ÉÁ¢ÎÊÌ⣬¿¼²éת»¯Ë¼Ï룬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿