题目内容
已知函数f(x)=cos(2x+π |
3 |
(I)当x∈[0,
π |
6 |
(II)在△ABC中,若cosB=
1 |
3 |
C |
2 |
1 |
4 |
分析:(I)先通过两角和及二倍角公式的变形把函数f(x)一个角的三角函数,进而求解函数的值域,
(II)由cosB及 B为三角形的内角可求sinB,再把f(
)代入可求 C,利用三角形的内角和 定理可得A=120°-B,利用两角差的正弦公式可求.
(II)由cosB及 B为三角形的内角可求sinB,再把f(
C |
2 |
解答:解:(I)∵f(x)=cos(2x+
)+sin2x
=
cos2x-
sin2x+
=
-
sin2x
又0≤x≤
∴0≤2x≤
0≤sin2x≤
则-
≤f(x)≤
函数f(x)的值域[-
,
]
(II)∵cosB=
∴sinB=
∵f(
) =
-
sinC=-
∴sinC=
且0°<C<90° 则C=60°
∴sinA=sin(120°-B)=
cosB+
sinB=
×
+
×
=
π |
3 |
=
1 |
2 |
| ||
2 |
1-cos2x |
2 |
=
1 |
2 |
| ||
2 |
又0≤x≤
π |
6 |
π |
3 |
| ||
2 |
则-
1 |
4 |
1 |
2 |
函数f(x)的值域[-
1 |
4 |
1 |
2 |
(II)∵cosB=
1 |
3 |
2
| ||
3 |
∵f(
C |
2 |
1 |
2 |
| ||
2 |
1 |
4 |
∴sinC=
| ||
2 |
∴sinA=sin(120°-B)=
| ||
2 |
1 |
2 |
| ||
2 |
1 |
3 |
1 |
2 |
2
| ||
3 |
| ||||
6 |
点评:本题主要考查了两角和的余弦公式的应用,要熟练掌握倍角公式的变形cos2α=
,sin2α=
;利用同角平方关系解题时要注意角的范围;还考查了三角形的内角和的应用.
1+cos2α |
2 |
1-cos2α |
2 |
练习册系列答案
相关题目