题目内容
10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$的焦距为10,点P(2,1)在C的渐近线上,则C的方程为( )A. | $\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}=1$ | B. | $\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$ | C. | $\frac{{x}^{2}}{80}-\frac{{y}^{2}}{20}=1$ | D. | $\frac{{x}^{2}}{20}-\frac{{y}^{2}}{80}=1$ |
分析 利用双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.
解答 解:∵双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$的焦距为10,点P(2,1)在C的渐近线上,
∴a2+b2=25,$\frac{2b}{a}$=1,
∴b=$\sqrt{5}$,a=2$\sqrt{5}$
∴双曲线的方程为$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}=1$.
故选:A.
点评 本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.
练习册系列答案
相关题目
1.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(x,-2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$+$\overrightarrow{b}$等于( )
A. | (-3,1) | B. | (3,1) | C. | (2,1) | D. | (-2,-1) |
5.执行如图所示的程序框图,要使输出的S的值小于1,则输入的t值不能是下面的( )
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
19.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交叉双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心的取值范围是( )
A. | ($\sqrt{3}$,+∞) | B. | (2,+∞) | C. | ($\sqrt{3}$,2) | D. | (1,2) |
2.双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\sqrt{2}$,双曲线C的渐近线与抛物线y2=2px(p>0)交于A,B两点,△OAB(O为坐标原点)的面积为4,则抛物线的方程为( )
A. | y2=8x | B. | y2=4x | C. | y2=2x | D. | ${y^2}=4\sqrt{3}x$ |