题目内容

已知函数y=sin
1
2
x+
3
cos
1
2
x
,求:
(1)函数y的最大值,最小值及最小正周期;
(2)函数y的单调递增区间.
分析:(1)利用辅助角公式将y=sin
1
2
x+
3
cos
1
2
x
转化为:y=2sin(
1
2
x+
π
3
),从而可求函数y的最大值,最小值及最小正周期;
(2)由2kπ-
π
2
1
2
x+
π
3
≤2kπ+
π
2
(k∈Z)即可求得函数y的单调递增区间.
解答:解:(1)∵y=sin
1
2
x+
3
cos
1
2
x
=2sin(
1
2
x+
π
3
),
∴ymax=2,ymin=-2,其最小正周期T=
1
2
=4π;
(2)由2kπ-
π
2
1
2
x+
π
3
≤2kπ+
π
2
(k∈Z)得:4kπ-
3
≤x≤4kπ+
π
3
(k∈Z),
∴函数y的单调递增区间为[4kπ-
3
,4kπ+
π
3
](k∈Z).
点评:本题考查正弦函数的单调性及周期性与最值,着重考查正弦函数的图象与性质的灵活应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网