题目内容
如图
为椭圆C:![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328714766.png)
的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率
,
的面积为
.若点
在椭圆C上,则点
称为点M的一个“椭圆”,直线
与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240513289016086.png)
(1)求椭圆C的标准方程;
(2)问是否存在过左焦点
的直线
,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328682441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328714766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328745582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328760551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328776593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328776527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328823723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328854859.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328870280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240513289016086.png)
(1)求椭圆C的标准方程;
(2)问是否存在过左焦点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328916333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328870280.png)
(1)
;(2)直线方程为
或
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328948636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328963784.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328979788.png)
试题分析:本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a和b的值,从而得到椭圆的方程;第二问,直线l过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328994503.png)
(1)由题意,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328760551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329026596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329057869.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329072898.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329088526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329119532.png)
∴椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329135313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328948636.png)
(2)①当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328870280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328870280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329197448.png)
联立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329213990.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329275844.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329306848.png)
不妨令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329322684.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329338694.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329369709.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329384777.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329400763.png)
所以此时以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329416399.png)
②当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328870280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328870280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329462705.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240513294781176.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329494310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240513295091169.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329540859.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240513295561086.png)
由根与系数关系得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240513295721319.png)
若使得以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329416399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328994503.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240513296181187.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329650580.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329665766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240513296811245.png)
代入
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240513295721319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051329712579.png)
所以直线方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328963784.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051328979788.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目