题目内容
如图,正四棱锥S—ABCD的底面边长为a,侧棱长为2a,点P、Q分别在BD和SC上,并且BP∶PD=1∶2,PQ∥平面SAD,求线段PQ的长.![]()
解析:延长CP交DA延长线于R.?
∵BC∥AD,∴
.?
∵PQ∥面SAD,面CSR∩面ASD=RS,∴PQ∥RS.?
∴
,DR=2BC=2a.?
∵SA=SD=2a,AD=a,?
∴cos∠SDA=
.?
∴SR2=4a2+4a2-2a·2a·2·
=6a2.?
∴SR=
a.∴PQ=
SR=
.?
练习册系列答案
相关题目