题目内容
【题目】甲、乙两人玩掷骰子游戏,甲掷出的点数记为,乙掷出的点数记为,
若关于的一元二次方程有两个不相等的实数根时甲胜;方程有
两个相等的实数根时为“和”;方程没有实数根时乙胜.
(1)列出甲、乙两人“和”的各种情形;
(2)求甲胜的概率.
必要时可使用此表格
【答案】(1)详见解析;(2) .
【解析】试题分析:(1) 由得 ,进而求出m的可能值,列举出结果;(2)根据m,n的取值情况以及古典概型的概率公式可求得甲胜的概率.
试题解析:(1)由得
的取值只能是、、、、、六种结果.其中、为完全平方数.
∴当且仅当或两种情形时,
此时方程有两个相等的实数根,甲、乙两人“和”.
(2)的取值只能是: 、、、、、六种结果.
的取值只能是: 、、、、、六种结果.
共有种情形,其所有取值的符号如下表:
其中的情形共有种. ∴ 所求甲胜的概率 .
| 1 | 4 | 9 | 16 | 25 | 36 |
4 | — | 0 | + | + | + | + |
8 | — | — | + | + | + | + |
12 | — | — | — | + | + | + |
16 | — | — | — | 0 | + | + |
20 | — | — | — | — | + | + |
24 | — | — | — | — | + | + |
【题目】某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | 0.4 | |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55] | 15 | 0.3 |
(1)补全频率分布直方图并求 的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[4,45)岁的概率.
【题目】某工厂36名工人的年龄数据如下表.
工人编号 年龄 | 工人编号 年龄 | 工人编号 年龄 | 工人编号 年龄 |
1 40 | 10 36 | 19 27 | 28 34 |
2 44 | 11 31 | 20 43 | 29 39 |
3 40 | 12 38 | 21 41 | 30 43 |
4 41 | 13 39 | 22 37 | 31 38 |
5 33 | 14 43 | 23 34 | 32 42 |
6 40 | 15 45 | 24 42 | 33 53 |
7 45 | 16 39 | 25 37 | 34 37 |
8 42 | 17 38 | 26 44 | 35 49 |
9 43 | 18 36 | 27 42 | 36 39 |
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2)计算(1)中样本的均值x和方差s2;
(3)36名工人中年龄在与之间有多少人?所占的百分比是多少(精确到0.01%)?