题目内容

已知函数f(x)=a2x+1(a>0,且a≠1)的反函数是y=f-1(x),若f-1(3)+f-1(9)=2,则a=
2
2
分析:求出函数的反函数,通过f-1(3)+f-1(9)=2,求出a的值.
解答:解:函数f(x)=a2x+1(a>0,且a≠1)的反函数是y=f-1(x)=
1
2
loga(x-1)
因为f-1(3)+f-1(9)=2,
所以
1
2
log
(3-1)
a
+
1
2
log
(9-1)
a
=2,所以a=2.
故答案为2.
点评:本题是基础题,考查函数与反函数的关系,对数方程的解,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网