题目内容

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1
(1)求证:f(0)=1 且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数.
分析:(1)f(m+n)=f(m)•f(n)恒成立,考虑取m=1,n=0,代入,结合条件x>0时,有0<f(x)<1,可求f(0);设x<0时,则-x>0,根据已知条件可得0<f(-x)<1,结合f(0)=1,从而可得f(x)>1,即得结论.
(2)要证函数在R上单调递减?x1<x2时有f(x2)<f(x1),结合已知条件构造f(x1)=f[(x1-x2)+x2],利用已知可证.
解答:证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),
令m=1,n=0,可得f(1)=f(1)•f(0),
∵当x>0时,0<f(x)<1,∴f(1)≠0.
∴f(0)=1.
令m=x<0,n=-x>0,
则f(m+n)=f(0)=f(-x)•f(x)=1,
∴f(-x)f(x)=1,
又∵-x>0时,0<f(-x)<1,
f(x)=
1
f(-x)
>1

(2)设x1<x2,则x1-x2<0,
根据(1)可知 f(x1-x2)>1,f(x2)>0.
∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),
∴函数f(x)在R上单调递减.
点评:本题主要考查抽象函数的函数值的求解,函数的单调性的定义法证明,属于中档题,函数的单调性的证明实际是通过配凑来比较函数值的大小,注意构造的技巧在解题中的 应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网