题目内容

精英家教网已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦点为F,过F且斜率为
3
的直线交C于A、B两点,若
AF
=4
FB
,则C的离心率为(  )
A、
6
5
B、
7
5
C、
5
8
D、
9
5
分析:设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推|AD|=
1
2
|AB|
,由双曲线的第二定义|AM|-|BN|=|AD|,进而根据
.
AF
=4
.
FB
,求得离心率.
解答:解:设双曲线C:
x2
a2
-
y2
b2
=1
的右准线为l,
过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,
由直线AB的斜率为
3

知直线AB的倾斜角为60°
∴∠BAD=60°
|AD|=
1
2
|AB|

由双曲线的第二定义有:
|AM|-|BN|=|AD|=
1
e
(|
AF
|-|
FB
|)

=
1
2
|AB|=
1
2
(|
AF
|+|
FB
|)

1
e
•3|
FB
|=
5
2
|
FB
|
,∴e=
6
5

故选A.
点评:本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网