题目内容

【题目】已知函数f(x)= 的定义域是R,则实数m的取值范围是

【答案】[0,8]
【解析】解:∵f(x)= 的定义域为R, ∴mx2+mx+2≥0在R上恒成立,
①当m=0时,有2>0在R上恒成立,故符合条件;
②当m≠0时,由 ,解得0<m≤8,
综上,实数m的取值范围是[0,8].
所以答案是:[0,8].
【考点精析】利用函数的定义域及其求法对题目进行判断即可得到答案,需要熟知求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网