题目内容
已知实数a,b均不为零,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_ST/2.png)
A.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_ST/3.png)
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_ST/4.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_ST/5.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_ST/6.png)
【答案】分析:首先题目涉及到正切函数与正弦余弦函数的关系,考虑到把根据三角函数的恒等关系把它们化为统一,然后求解即可得到答案.
解答:解:由题意
则
两边求正切得到:
=
=
.
所以
,
故答案为B.
点评:此题主要考查三角函数恒等变换的应用,题中用到正切函数的公式.三角函数的恒等关系在计算题中应用广泛需要理解记忆.
解答:解:由题意
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_DA/4.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224753980948695/SYS201311012247539809486005_DA/5.png)
故答案为B.
点评:此题主要考查三角函数恒等变换的应用,题中用到正切函数的公式.三角函数的恒等关系在计算题中应用广泛需要理解记忆.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知实数a,b均不为零,
=tanβ,且β-α=
,则
等于( )
asinα+bcosα |
acosα-bsinα |
π |
6 |
b |
a |
A、
| ||||
B、
| ||||
C、-
| ||||
D、-
|