题目内容
【题目】若存在对于定义域为R的函数f(x),若存在非零实数x0 , 使函数f(x)在(﹣∞,x0)和(x0 , +∞)上均有零点,则称x0为函数f(x)的一个“纽点”.则下列四个函数中,不存在“纽点”的是( )
A.f(x)=x2+bx﹣1(b∈R)
B.f(x)=2x﹣x2
C.f(x)=﹣x﹣1
D.f(x)=2﹣|x﹣1|
【答案】C
【解析】解:A、f(x)=x2+bx﹣1(b∈R)为二次函数,△=b2+4>0,有两个零点,且分布在图象对称轴x=两侧,则纽点为;
B、分别做y=2x与y=x2图象,如图交于两点,则有图可知纽点存在,可以取为0
C、f(x)=﹣x﹣1,函数图象
只有一个零点,不存在纽点;
D、f(x)=2﹣|x﹣1|的纽点为1;
故选C.
【考点精析】解答此题的关键在于理解函数的单调性的相关知识,掌握注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种.
【题目】当今信息时代,众多中小学生也配上了手机.某机构为研究经常使用手机是否对学习成绩有影响,在某校高三年级50名理科生第人的10次数学考成绩中随机抽取一次成绩,用茎叶图表示如图:
(1)根据茎叶图中的数据完成下面的2×2列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?
及格(60及60以上) | 不及格 | 合计 | |
很少使用手机 | |||
经常使用手机 | |||
合计 |
(2)从50人中,选取一名很少使用手机的同学(记为甲)和一名经常使用手机的同学(记为乙)解一道函数题,甲、乙独立解决此题的概率分别为P1 , P2 , P2=0.4,若P1﹣P2≥0.3,则此二人适合为学习上互帮互助的“对子”,记X为两人中解决此题的人数,若E(X)=1.12,问两人是否适合结为“对子”? 参考公式及数据: ,其中n=a+b+c+d
P(K2≥k0) | 0.10 | 0.05 | 0.025 |
k0 | 2.706 | 3.841 | 5.024 |