题目内容
如图,P是双曲线
-
=1(a>0,b>0,xy≠0)上的动点,F1、F2是双曲线的左右焦点,M是∠F1PF2的平分线上一点,且F2M⊥MP.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=
|NF1|,…,|OM|=a.类似地:P是椭圆
+
=1(a>b>0,b2+c2=a2,xy≠0)上的动点,F1、F2是椭圆的左右焦点,M是∠F1PF2的平分线上一点,且F2M⊥MP,则|OM|的取值范围是
x2 |
a2 |
y2 |
b2 |
1 |
2 |
x2 |
a2 |
y2 |
b2 |
(0,c)
(0,c)
.分析:类比双曲线中的研究方法,结合椭圆的定义,即可确定|OM|的取值范围.
解答:解:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=
|NF1|=
(|PF1|-|PF2|)
∵|PF1|+|PF2|=2a
∴|OM|=a-|PF2|
∵a-c≤|PF2|≤a+c
∵P、F1、F2三点不共线
∴0<a-|PF2|<c
∴0<|OM|<c
故答案为:(0,c).
1 |
2 |
1 |
2 |
∵|PF1|+|PF2|=2a
∴|OM|=a-|PF2|
∵a-c≤|PF2|≤a+c
∵P、F1、F2三点不共线
∴0<a-|PF2|<c
∴0<|OM|<c
故答案为:(0,c).
点评:本题考查类比推理,考查椭圆的定义,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关题目