题目内容

设点P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与圆x2+y2=a2+b2在第一象限的交点,F1,F2分别是双曲线的左、右焦点,且|PF1|=2|PF2|,则双曲线的离心率为(  )
A、
5
B、
5
2
C、
10
D、
10
2
分析:由P是双曲线
x2
a2
-
y2
b2
=1(a>,b>0)
与圆x2+y2=a2+b2在第一象限的交点,推导出∠F1PF2=90°.再由|PF1|=2|PF2|,知|PF1|=4a,|PF2|=2a,由此求出c=
5
a,从而得到双曲线的离心率.
解答:解:∵P是双曲线
x2
a2
-
y2
b2
=1(a>,b>0)
与圆x2+y2=a2+b2在第一象限的交点,
∴点P到原点的距离|PO|=
a2+b2
=c

∴∠F1PF2=90°,
∵|PF1|=2|PF2|,
∴|PF1|-|PF2|=|PF2|=2a,∴|PF1|=4a,|PF2|=2a,
∴16a2+4a2=4c2
∴c=
5
a,
e=
c
a
=
5

故选A.
点评:本题考查双曲线的性质和应用,解题时要注意公式的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网