题目内容
已知|
| =2
,|
|=3,<
,
>=
,如图,若
= 5
+2
,
=
-3
,D为BD的中点,则|
|为( )
p |
2 |
q |
p |
q |
π |
4 |
AB |
p |
q |
AC |
p |
q |
AD |
分析:由D为BD的中点,知|
|=
(
+
)=3
-
.由|
| =2
,|
|=3,<
,
>=
,能求出|
| =
.
AD |
1 |
2 |
AB |
AC |
p |
1 |
2 |
q |
p |
2 |
q |
p |
q |
π |
4 |
AD |
15 |
2 |
解答:解:∵D为BD的中点,
∴|
|=
(
+
)
=
(5
+ 2
)+
(
-3
)
=3
-
.
∵|
| =2
,|
|=3,<
,
>=
,
∴|
| 2=(
)2+(3×2
)2-2×
×(3×2
)cos45°=
.
∴|
| =
.
故选A.
∴|
AD |
1 |
2 |
AB |
AC |
=
1 |
2 |
p |
q |
1 |
2 |
p |
q |
=3
p |
1 |
2 |
q |
∵|
p |
2 |
q |
p |
q |
π |
4 |
∴|
AD |
3 |
2 |
2 |
3 |
2 |
2 |
225 |
4 |
∴|
AD |
15 |
2 |
故选A.
点评:本题考查向量的加减运算,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目
已知|
|=2
,|
|=3,
,
夹角为
,则以
,
为邻边的平行四边形的一条对角线长为( )
p |
2 |
q |
p |
q |
π |
4 |
p |
q |
A、5 | ||
B、
| ||
C、14 | ||
D、
|