题目内容

已知|
p
|=2
2
,|
q
|=3
p
q
的夹角为
π
4
,则以  
a
=5
p
+2
q
b
=
p
-3
q
为邻边的平行四边形的长度较小的对角线的长是(  )
分析:
a
b
为邻边作平行四边形,则此平行四边形的两条对角线分别为
a
+
b
a
-
b
,分别求出他们的模,然后进行比较,即可得到结论.
解答:解:以
a
b
 为邻边的平行四边行的两对角线之长可分别记为|
a
+
b
|,|
a
-
b
|,
|
p
|=2
2
,|
q
|=3
p
q
的夹角为
π
4
,则以  
a
=5
p
+2
q
b
=
p
-3
q

a
+
b
=6
p
-
q

|
a
+
b
|=
(6
p
-
q
)2

=
36
p
2
-12
p
q
+
q
2

=
36×8-12×2
2
×3×cos
π
4
+9

=15.
a
-
b
=4
p
+5
q

|
a
-
b
|=
(4
p
+5
q
)2

=
16
p
2
+40
p
q
+25
q
2

=
16×8+40×2
2
×3×cos
π
4
+25×9

=
593

∵15<
593

∴长度较小的对角线的长是15.
故选A.
点评:本题考查向量的运算法则:平行四边形法则、向量的数量积的定义式以及向量的模计算公式.体现了数形结合的思想,同时也考查了学生应用知识分析解决问题的能力,此题是个中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网