题目内容

已知sinθ+cosθ=
15
,θ∈(0,π).求值:(1)tanθ;(2)sin3θ+cos3θ
分析:利用sinθ+cosθ=
1
5
,θ∈(0,π).结合平方关系,求出sinθ,cosθ的值,然后代入直接求出(1)tanθ;(2)sin3θ+cos3θ的值即可.
解答:解∵sinθ+cosθ=
1
5
,θ∈(0,π ),
∴(sinθ+cosθ )2=
1
25
=1+2sinθ cosθ,
∴sinθ cosθ=-
12
25
<0.由根与系数的关系知,sinθ,cosθ 是方程x2-
1
5
x-
12
25
=0的两根,
解方程得x1=
4
5
,x2=-
3
5

∵sinθ>0,cosθ>0,∴sinθ=
4
5
,cosθ=-
3
5

则tanθ=-
4
3
; sin3θ+cos3θ=
37
125

故(1)tanθ=-
4
3
.(2)sin3θ+cos3θ=
37
125
点评:本题是基础题,考查三角函数的化简求值,注意三角函数的各象限的三角函数的符号,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网