题目内容

已知sinα+cosα=
15
且0<α<π,求值:
(1)sin3α-cos3α;  
(2)tanα.
分析:(1)由已知sinα+cosα=
1
5
,平方可得 1+2sinαcosα=
1
25
,解得 2sinαcosα=-
24
25
.再由 0<α<π,求得 sinα=
4
5
,cosα=-
3
5
,由此求得sin3α-cos3α 的值.
(2)由(1)求得 sinα=
4
5
,cosα=-
3
5
,再根据 tanα=
sinα
cosα
,运算求得结果.
解答:解:(1)∵已知sinα+cosα=
1
5
,∴平方可得 1+2sinαcosα=
1
25
,∴2sinαcosα=-
24
25

再由 0<α<π,求得 sinα=
4
5
,cosα=-
3
5
,∴sin3α-cos3α=(
4
5
)
3
-(-
3
5
)
3
=
91
125

(2)由(1)求得 sinα=
4
5
,cosα=-
3
5
,∴tanα=
sinα
cosα
=-
4
3
点评:本题主要考查同角三角函数的基本关系的应用,求出 sinα=
4
5
,cosα=-
3
5
,是解题的关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网