题目内容
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
(1) (2)75 (3)10人
解析
练习册系列答案
相关题目
某电视台在一次对文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关数据如下表所示:
| 文艺节目 | 新闻节目 | 总计 |
20岁到40岁 | 40 | 20 | 60 |
40岁以上 | 15 | 25 | 40 |
总计 | 55 | 45 | 100 |
(1)用分层抽样方法在收看新闻节目的观众中,随机抽取9名,那么40岁以上的观众应抽取几名?
(2)由表中数据分析,我们能否有99%的把握认为收看新闻节目的观众与年龄有关?(最后结果保留3位有效数字,四舍五入)
附:
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
某学校高一年学生在某次数学单元测试中,成绩在的频数分布表如下:
分数 | |||
频数 | 60 | 20 | 20 |
(1)用分层抽样的方法从成绩在,和的同学中共抽取人,其中成绩在的有几人?
(2)从(1)中抽出的人中,任取人,求成绩在和中各有人的概率?
某工厂有工人人,其中名工人参加过短期培训(称为类工人),另外名工人参加过长期培训(称为类工人).现用分层抽样的方法(按类、类分二层)从该工厂的工人中共抽查 名工人,调查他们的生产能力(此处的生产能力指一天加工的零件数).
(1)类工人和类工人中各抽查多少工人?
(2)从类工人中的抽查结果和从类工人中的抽查结果分别如下表1和表2.
表1
生产能力分组 | |||||
人数 |
生产能力分组 | ||||
人数 |
①求、,再完成下列频率分布直方图;
②分别估计类工人和类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组
中的数据用该组区间的中点值作代表).