题目内容
2.以AB为直径的圆内有一内接梯形ABCD,且AB∥CD,以A,B为焦点的椭圆恰好过C,D两点,当梯形ABCD的周长最大时,此椭圆的离心率为$\sqrt{3}$-1.分析 设∠BAC=θ,作CE⊥AB于点E,则可表示出BC,EB,CD,进而可求得梯形的周长的表达式,根据二次函数的性质求得面积的最大值时θ的值,则AC和BC可求,进而根据椭圆的定义求得椭圆的长轴,利用离心率公式,可得结论.
解答 解:设∠BAC=θ,过C作CE⊥AB,垂足为E,则
BC=2csinθ,BE=BCcos(90°-θ)=2csin2θ,
∴CD=2c-4csin2θ,
梯形的周长l=AB+2BC+CD=2c+4csinθ+2c-4csin2θ=4c(sinθ+cos2θ)
=4c(-sin2θ+sinθ+1)=4c[-(sinθ-$\frac{1}{2}$)2+$\frac{5}{4}$],
当sinθ=$\frac{1}{2}$时,周长有最大值,此时θ=30°,
则BC=c,AC=$\sqrt{3}$c,a=$\frac{1}{2}$(AC+BC)=$\frac{\sqrt{3}+1}{2}$•c,
e=$\frac{c}{a}$=$\frac{c}{\frac{\sqrt{3}+1}{2}c}$=$\sqrt{3}$-1.
故答案为:$\sqrt{3}$-1.
点评 本题主要考查了椭圆的应用,考查椭圆与圆的综合,考查椭圆的几何性质,充分利用了椭圆的定义.
练习册系列答案
相关题目
13.已知集合A={x∈Z|-1≤x≤2},集合B={y|y=$\frac{πx}{2}$},则A∩B=( )
A. | {-1,0,1} | B. | {0,1,2} | C. | {-1,0,1,2} | D. | ∅ |
7.深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:
(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.
申请意向 年龄 | 摇号 | 竞价(人数) | 合计 | |
电动小汽车(人数) | 非电动小汽车(人数) | |||
30岁以下 (含30岁) | 50 | 100 | 50 | 200 |
30至50岁 (含50岁) | 50 | 150 | 300 | 500 |
50岁以上 | 100 | 150 | 50 | 300 |
合计 | 200 | 400 | 400 | 1000 |
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.
12.已知函数f(x)是奇函数,当x>0时,f(x)=x2+ln(x+$\sqrt{1+{x}^{2}}$),则当x<0时,f(x)=( )
A. | -x2+ln(x+$\sqrt{1+{x}^{2}}$) | B. | x2-ln(x+$\sqrt{1+{x}^{2}}$) | C. | -x2+ln(-x+$\sqrt{1+{x}^{2}}$) | D. | x2+ln(x+$\sqrt{1+{x}^{2}}$) |